Lithium-Ion Batteries and Electric Vehicles: Upgrading the Storm Watch to Storm Warning

|
 |  Includes: ALTI, AONEQ, HEV, VLNCQ
by: John Petersen

Before moving to Switzerland in 1998 I lived and worked in Houston, Texas, a place that teaches you the importance of keeping an eye on long-term weather forecasts, particularly during hurricane season. Most of the time it turns out to be wasted effort because Mother Nature is fickle and highly unpredictable, but when it's important it's really important. The same logic holds for investments in energy storage and electric vehicle technologies. You have to keep a close eye on the industrial and regulatory climate and be ready to change your plans when conditions change.

For eighteen months I've cautioned that lithium-ion batteries are not suitable or cost-effective for use in cars with plugs, which are collectively classified as grid enabled vehicles, or GEVs, by the Electrification Coalition, a newly organized industrial lobby for the lithium-ion battery and electric vehicle industries. I raised the storm watch flag based on a DOE report that discusses the technical and economic challenges of using lithium-ion batteries in GEVs; a White House report that the GM Volt is not likely to be competitive; an unpublished DOE roadmap for lithium-ion battery development that highlights the need for several generations of improvement in battery chemistry and manufacturing technology; a National Research Council report that battery costs are likely to remain high for decades; and an Energy Information Administration forecast that GEVs won't account for more than 3% of the market before 2035. Politicians, reporters and eco-clerics are all enamored with GEVs, but they generally live in a "wouldn't if be great if ...?" world where economics, paychecks and monthly bills don't matter. In contrast, the people who bear the front line responsibility for implementing unsound policies see nothing but problems.

Now I think it's probably time to upgrade the storm watch to a storm warning.

Storm Warning I: Lithium-Ion Batteries

On December 7, 2009, the DOE's Advanced Research Projects Agency – Energy, which goes by the acronym ARPA-E, released a $100 million funding opportunity announcement for battery research and development projects that have a reasonable chance of achieving the long-term price and performance goals for electric vehicle batteries that lithium-ion technology can't even approach. While DOE funding opportunity announcements are a little arcane for most investors, I found the discussion in the Background section of the Program Overview revealing, which is why I'm upgrading my storm watch to a storm warning.

The background discussion starts out by repeating the widely publicized facts that the U.S. imports roughly 60% of its petroleum and uses almost 70% of available supplies for transportation. After describing the desirable economic and environmental impacts of shifting transportation to the electric grid, ARPA-E lays the blame for the anticipated shortcomings of GEVs squarely at the feet of the battery industry:

However, the widespread deployment of electric vehicles has been prevented to date by their limited range and high upfront capital costs due to the limitations of currently available battery technologies. Currently available high performance Lithium-ion battery technologies are limited to system level energy densities of ~100-120 Wh/kg, costs of $800-$1200/kWh, and short cycle life, resulting in unacceptably short driving range for the vast majority of consumers and un-economically high lifetime costs for electric vehicles.


After praising recent strides that have been made toward developing high-power batteries for HEVs (without plugs), the tone becomes decidedly ominous on the topic of high-energy batteries for GEVs where oft-stated performance goals "are pushing up against the fundamental energy density limits of traditional Lithium-ion based batteries." After referencing "strong doubts in the battery community as to whether the energy density of Lithium-ion batteries will be able to be pushed to the 200+ Wh/kg system level energy densities required for widespread deployment of all-electric vehicles" and grave reservations "as to whether traditional Lithium-ion based battery production for electrified vehicles offers an opportunity for the U.S. to assert domestic technology and manufacturing leadership within the context of the existing Lithium-ion based battery technology platform," the funding opportunity announcement confirms ARPA-E's "strong interest in supporting the development of new high energy, low cost battery technology approaches beyond traditional Lithium-ion batteries" and offers up to $100 million in grants for battery researchers that are willing to rise to the challenge.

Overall the discussion struck me as a politically guarded admission of the inescapable reality that lithium-ion batteries are not good enough, durable enough or cheap enough for GEVs; and they're not expected to improve much in the foreseeable future. In other words, it's time to kick lithium-ion batteries to the sidelines, launch Plan B and develop new battery technologies that may actually be capable of doing the required work at an acceptable cost.

Storm Warning II: Raw Materials Constraints In Electric Drive Motors

A second storm warning that came to my attention this weekend is an issue that my friend Jack Lifton has been writing about for years -- Chinese domination of the global market for rare earth metals. On December 22, 2009 the DOE released a "Notice of Intent - FY2010 Vehicle Technologies Program Wide Broad Agency Announcement" that includes the following area of interest:

"Subtopic 3 (d)-Motors Using No Rare Earth Permanent Magnets for Advanced EDV Electric Traction Drives

This subtopic is for motor technologies that eliminate the use of rare earth permanent magnets. Analysis of recent price trends and resource availability indicate cost and availability concerns of these material types. Approaches may include the use of non-rare earth magnet materials or motor technologies that do not use permanent magnets to meet the desired size, weight, and cost targets."

I can't wait to see the formal funding opportunity announcement on this one. We may even see a carefully worded admission that the Chinese need their rare earth production to satisfy domestic demand and mining is so unpopular with the eco-clerics that it's easier to do without GEVs unless we can invent a whole new class electric drive motors that are not material constrained. I wonder how long the anti-mining attitudes will last when the general public comes to the realization that the generators in wind turbines are subject to the same raw material constraints.

The Perfect Storm

In combination I view these two DOE funding opportunities as a one-two punch for GEVs. The lithium-ion batteries that the investment world is valuing at nosebleed levels are not going to be up to the job and even if the batteries improve beyond the DOE's wildest expectations there won't be any permanent magnet motors to drive the wheels. From where I sit, it's beginning to look like another abortive government attempt to create a market for technologies that consumers don't want and global supply chains can't support. Other fine examples of the syndrome include:

Every industrial revolution in history has been driven by innovation that gave people the ability to do more with less. While I believe the coming cleantech revolution will be driven in large part by constraint and increasing competition for water, food, energy and virtually every commodity you can imagine, efficiency is inherently cheaper than waste and the winning solutions will be technologies that allow us to do more with less. Technologies that require more and deliver less will, of necessity, end up on the dung heap of history.

Disclosure: Author is a former director Axion Power International (NASDAQ:AXPW) and holds a large long position in its stock. He also holds small long positions in Exide Technologies (XIDE), C&D Technologies (CHP) Active Power (NASDAQ:ACPW), ZBB Energy (ZBB) and Great Western Minerals Group (GWG.V).