On EESAT and Energy Storage Opportunities on the Smart Grid

by: John Petersen

Last week I appeared as a luncheon speaker at EESAT 2009, a biennial international technical conference sponsored by the DOE, Sandia National Laboratories and the Electricity Storage Association that focuses on storage technologies for utility applications. The conference included dozens of high-level technical presentations from storage technology developers and was far and away the best-organized event I've ever attended. The only notable absence was a large contingent of buyers, which left some participants wondering whether they were preaching to the choir. Nevertheless, I was encouraged by rapid growth in the number and size of utility-scale demonstration projects and the growing body of proof that storage will be a critical enabling technology for the smart grid. I left Seattle more convinced than ever that the opportunities in grid-based energy storage are huge, but that successful investing will require study, patience, diligence and a firm grasp of economics.

The theme of my presentation was that some developers of energy storage devices are destined to follow in the footsteps of Arkwright, Fulton, Vanderbilt, Carnegie, Rockefeller, Ford, Moore, Gates, and Brin, and become the next generation of industrial legends for one simple reason: we're entering an era where 500 million people in North America and Western Europe can no longer lay claim to the lion's share of global resources because the other 6 billion inhabitants of our planet know for the first time that there's more to life than mere subsistence. While each of them may only want a small piece of the pie, the law of large numbers will give rise to explosive increases in global demand for everything and the only way to avoid armed conflict or catastrophic environmental damage is to minimize waste in all its forms, beginning with energy.

On the cautionary side I returned often to the unpleasant reality that most grid-connected storage applications won't pay under current economic conditions because the spread between the cost of storage and the value of storage remains narrow. That cost-benefit equation is changing rapidly as energy costs rise and renewables are added, but as long as waste is cheaper than storage, waste will prevail. The following graph comes from a November 2004 presentation (.pdf) by John Broyes of Sandia National Laboratories that provided an overview of the DOE's Energy Storage Systems Program. The chart focused on the California utility market and showed the clear inverse relationship between the installed cost of energy storage systems and total demand for those systems. It merits more than a passing glance from investors who want to know where the business is (see p. 11 of the presentation for an expanded version).

2004 Sandia.png

While the graph contains a wealth of information on the wide variety of potential uses for storage in the utility market, the most important lesson for energy storage investors is price sensitivity. When total installed costs for energy storage systems are $1,000 per kW or higher, demand for storage is almost insignificant. As installed costs fall into the $600 per kW range, the number of cost-effective utility applications soars. I've been told that an updated version of the graph is in the works and will be released shortly. You can bet that I'll be among the first to write about it.

There were several EESAT presentations that focused on important but expensive frequency regulation technologies that are priced beyond the high-range of the graph. Over the last year, demonstration systems from Beacon Power (BCON), Altair Nanotechnologies (ALTI) and A123 Systems (AONE) have shown a remarkable ability to respond to regulation signals in microseconds and provide up and down regulation at speeds that traditional systems can't even begin to match. Based on estimates from the PJM Interconnection, one of the independent system operators that manage the U.S. grid, national demand for frequency regulation installations is on the order of 6,000 MW and could be much higher if flywheel and battery systems prove capable of handling longer duration load ramping intervals. The ongoing tests are not conclusive because the new systems have not been in service long enough to establish their useful lives, but the preliminary results are promising.

There were also several EESAT presentations that dealt with more mundane energy storage applications that were priced in the mid-range of the graph. Those projects ranged from the use of flow batteries at cellular telephone installations in Africa to a recently completed 12-year demonstration where Exide Technologies (XIDE) used lead-acid batteries to effectively eliminate the need for diesel fueled backup power on a remote island where the primary power source was renewable. Yet another presentation showed how computer analysis of satellite maps was being used to identify new locations in Ireland for pumped hydro, a technology that generally falls in the low-range of the graph but is commonly believed to have limited potential because most of the desirable locations are already developed.

Overall, the most important takeaways from EESAT were that from a utility perspective:

  • Storage is the economic equivalent of a dispatchable generating asset;
  • Installed cost and reliability will be the primary drivers of decisions to implement storage solutions;
  • Maintenance and cycle life will be secondary decision drivers;
  • An optimal smart grid configuration will need storage equal to at least 5% of peak system load; and
  • As renewables become prevalent, storage will become increasingly critical to grid stability.

In Energy Storage on the Smart Grid Will Be 99.45% Cheap and 0.55% Cool, I explained that the required annual storage build in the State of California was estimated at 500 MW per year for the next decade. Of this total, 50 MW would need to be fast storage in the form of flywheels and Li-ion batteries and the 450 MW balance would be 4 to 6 hour storage in the form of pumped hydro, compressed air, flow batteries and advanced lead acid batteries. When the California numbers are scaled up to a national level, they translate to billions in new annual demand for as far as the eye can see. When you add in billions in new demand for transportation, it's clear that the sector isn't even close to ready for the near-term demands. To compound the problem, essential raw material supply chains aren't ready either.

In preparation for my EESAT presentation, I spent a good deal of time analyzing how the energy storage industry of today is different from the industry that existed a few years ago. My most important conclusion was that energy storage devices are rapidly evolving from minor components in high-value durable goods to stand-alone end user products. As a result, the cost of energy storage is rocketing from less than 5% of product cost in the case of portable electronics to more than 50% of product cost in the case of an EV like the Tesla roadster. When you get into the utility arena, the storage devices are the products and represent 100% of the product costs. Since consumers generally have higher payback expectations and shorter investment horizons than utilities, I believe consumer price sensitivity will be very high notwithstanding the current flood of optimistic stories, speeches and reports from the mainstream media, politicians and environmental activists.

While some of the stock market valuations in the energy storage sector reflect the emerging reality that energy storage is and will remain a highly price sensitive product, others do not. As a result, we have a weird market dynamic where Enersys (ENS), the world's largest manufacturer, marketer and distributor of industrial batteries, trades at a 50% discount to a newcomer like A123 Systems (AONE); and Exide Technologies (XIDE), the world's second largest manufacturer of OEM automotive batteries, trades at a 28% discount to a newcomer like Ener1 (HEV). While the valuation disparities might be justified if either of the newcomers had a technology that would displace the established leaders or significantly erode their revenues or margins, that outcome can't be expected in the foreseeable future because the newcomers are focused on far more expensive products for markets that don't even exist yet.

Over the last fifteen months I've written 92 blog entries that focus exclusively on the energy storage sector; the established and emerging energy storage technologies; and the principal competitors in the industry. My recurring simple hypothesis has been that cheap energy storage will beat cool energy storage in the market and that companies that manufacture objectively cheap products will experience far more rapid and sustained stock price growth than companies that are developing objectively expensive products. Over that time, my personal trading account that includes Active Power (ACPW), Enersys (ENS), Exide Technologies (XIDE), ZBB Energy (ZBB) and Great Western Minerals Group (GWMGF.PK) has gained over 300%. Nevertheless, I think I've finally reached a point where I've said most things that can be said. Accordingly I plan to slack off a bit and write in response to current events instead of trying to maintain a regular schedule.

Over the next decade, I believe that every energy storage company that brings a product to market will have more business than it can handle. Nevertheless, I believe that companies that have attained lofty market valuations based on ambitious plans to develop exotic products are likely to trade flat or decline in price while the companies that have less ambitious goals and less expensive products have substantial upside potential.

My favorite short-term holding is ZBB Energy (ZBB) because its ZESS 50 and ZESS 500 flow battery systems are market ready and carry an attractive mid-range price while its market capitalization of $15.3 million is but a small fraction of the peer group average. My favorite mid- to long-term holding is Axion Power International (AXPW.OB) because its first generation PbC batteries are in production and have been delivered to select end users for testing, the PbC battery promises a cheap solution for a wide variety of mundane energy storage applications and Axion's market capitalization of roughly $80 million is well below the peer group average.

The only thing that will prove me right or wrong is time.

DISCLOSURE: Author is a former director of Axion Power International
and has a substantial long position in its stock. He also has small long positions in Active Power, Enersys, Exide Technologies, ZBB Energy and Great Western Minerals Group.