Please Note: Blog posts are not selected, edited or screened by Seeking Alpha editors.

Cement Mill

Cement is made by heating limestone (calcium carbonate), with small quantities of other materials (such as clay) to 1450 °C in a kiln, in a process known as calcination, whereby a molecule of carbon dioxide is liberated from the calcium carbonate to form calcium oxide, or quicklime, which is then blended with the other materials that have been included in the mix . The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum into a powder to make 'Ordinary Portland Cement', the most commonly used type of cement (often referred to as OPC).
Portland cement is a basic ingredient of concrete, mortar and most non-speciality grout. The most common use for Portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate (gravel and sand), cement, and water. As a construction material, concrete can be cast in almost any shape desired, and once hardened, can become a structural (load bearing) element. Portland cement may be gray or white.
A cement mill (or finish mill in North American usage) is the equipment used to grind the hard, nodular clinker from the cement kiln into the fine grey powder that is cement. Most cement is currently ground in ball mills.
The cement mill on a cement plant are usually sized for a clinker consumption considerably greater than the output of the plant's kilns. This is for two reasons:
The mills are sized to cope with peaks in market demand for cement. In temperate countries, the summer demand for cement is usually much higher than that in winter. Excess clinker produced in winter goes into storage in readiness for summer demand peaks. For this reason, plants with highly seasonal demand usually have very large clinker stores.
Cement mill is the largest user of electric power on a cement plant, and because they can easily be started and stopped, it often pays to operate cement mills only during "off-peak" periods when cheaper power is available. This is also favourable for electricity producers, who can negotiate power prices with major users in order to balance their generating capacity over 24 hours. More sophisticated arrangements such as "power shedding" are often employed. This consists of the cement manufacturer shutting down the plant at short notice when the power supplier expects a critical demand peak, in return for favourable prices. Clearly, plenty of excess cement milling capacity is needed in order to "catch up" after such interruptions.